ATTACHMENTH
MONTE CARLO METHODOLOGY FOR UNCERTAINTY ANALYSIS

ON THE EMBM AND FORECAST TRAJECTORY



Attachment H: Monte Carlo Methodology for Uncertainty Analysis on EMB and
Trajectory Forecasts.

1.0 Introduction

Environmental systems generally have several sources of uncertainties, and these uncertainties
are not merely due to a lack of proper measurements, but primarily due to the randomness
inherent in real ecosystems. The implications of these uncertainties are particularly important in
the assessment of several potential regulatory options, for example, with respect to the selection
of a strategy for the control of pollutant levels. Incorporating these uncertainties into the
modeling process, could potentially result in providing useful information that can aid in
decision making.

The EMBM best estimate scenario assumed average values for all model inputs in determining
the solids contribution, fate and transport of chemicals, as well as the forecast of future surface
sediment concentrations under various remedial scenarios. To incorporate uncertainties in model
parameters, a Monte Carlo® sampling approach was used to develop 10,000 iterations of each
input. These 10,000 inputs were optimized in the EMBM and the optimized results were carried
through the trajectory forecast calculations. A combination Microsoft Excel® Solver and the
Crystal Ball® 7 (Decisioneering, Denver, CO, USA) add-on for Microsoft Excel® (a tool
typically used for solving optimization problems), was used to perform this analysis. The
objective of the uncertainty analysis was to provide an insight into the level of confidence in the
model estimates for the best estimate scenario. This attachment presents the detailed
methodology for the Monte Carlo analysis for the EMBM and Trajectory forecasts.

2.0 Methodology

The following stages were involved in the uncertainty analysis of the solids and contaminant
mass balances, and contaminant forecasts presented in the CSM: (a) characterization of
uncertainties in EMBM input chemical profiles, (b) estimation of the uncertainty in EMBM
optimized outputs resulting from the uncertainty in chemical profiles, and (c) characterization of
the uncertainties in model forecast resulting from uncertainties in the input profiles, EMBM
outputs of solids contribution, decay of excess contaminant concentrations (lambda), and depth
of resuspension reservoir/mixed layer (uncertainty propagation). A schematic diagram
illustrating the Monte Carlo methodology is given in Figure H-1 and detailed description is
presented below.

! Monte Carlo simulation is categorized as a sampling method in which the trails or realizations are randomly
generated from probability distributions to simulate the process of sampling from an actual population.



2.1 Uncertainties in EMB chemical input profiles

Thirteen chemicals (copper, chromium, mercury, lead, trans-chlordane, 4,4’-DDE, 2,3,7,8
TCDD, total TCDD, total PCB, benzo(a)pyrene, fluoranthene, iron and TOC) were optimized in
the EMBM to determine the solids balance. The uncertainties in the concentrations of these 13
chemicals for the external sources, and the resuspension source were defined by parametric and
non-parametric statistics, respectively. These are described below.

2.1.1 External Sources and Receptor Profiles

The observed concentrations for the 13 chemicals for the external sources (Upper Passaic River,
Newark Bay, Saddle River, Second River/SWO, Third River and CSOs) were generally normally
distributed. For each external source and the receptor, a bounded normal distribution defined by
the mean, standard deviation, minimum and maximum of each chemical was used to perform
Monte Carlo simulation in Crystal Ball® 7. In performing these Monte Carlo simulations, it was
important to maintain the relationship amongst the variables. Therefore, for each source, the
correlation matrix was also specified in Crystal Ball® 7 to ensure that the 10,000 iterations of
chemical profile represented the variability, inter-dependencies, and uncertainty for each external
source and the receptor. Figure H-2a though H-2g presents the statistical distributions of
chemical concentrations for the 13 chemicals optimized in the EMBM, for the external sources
and the receptor.

2.1.2 Resuspension Source Profiles

The chemical profiles for the resuspension source were generated based on the TSI 1995
observations. The concentrations of each chemical in this data were neither normal nor log-
normal distributed. None of the complex parametric distributions in Crystal Ball® 7 could
adequately fit the data set. Therefore, to create the 10,000 iterations of concentrations for the
resuspension source profile, a non-parametric simulation method called a bootstrap® was used.

The basic bootstrap approach uses Monte Carlo sampling to generate an empirical estimate of the
sampling distribution of interest. In the bootstrap method, the 1995 data set was treated as the
population and a Monte Carlo-style procedure was conducted on it to 10,000 iterations of the
mean of the 13 chemicals optimized. This was done as follows:

1. The original sample locations of size 92 from the 1995 TSI data set were assumed to
define the population of data set in surface sediments for resuspension. Note that in
performing this analysis, TSI Location 246 was removed from the data set, because the
PAH concentrations at this location were not representative of PAH values generally
reported in the 1995 TSI data set.

2 Bootstrap is a powerful Monte Carlo method that re-samples the original sample set with replacement to
generate a distribution of sample's statistics. It is a non-parametric method.



2. The original locations were resampled with replacement to generate a bootstrap sample of
size 91. This creates a bootstrap data set of the same size as the original, excluding
Location 246. By resampling the locations rather than each chemical independently, the
correlations amongst the chemicals were maintained. Note that this bootstrap sample set
may include some sample numbers in the original sample several times, and at the same
time other sample numbers may be excluded.

3. Using the chemical concentrations for the locations selected in the 91 bootstrap samples,
the average concentration for each chemical was calculated.

4. Steps 2 and 3 were repeated 10,000 times to generate the empirical distribution of the
resuspension source profile (Figure H-2h).

The 10,000 average concentrations generated for each chemical via bootstrap for resuspension
were used along with the 10,000 iterations for the external sources and receptor to represent the
uncertainty in the inputs for EMBM optimization.

2.2 Estimation of uncertainty in EMB Output

A Microsoft Excel® macro®, which calls the SOLVER routine, was developed to perform the
EMBM optimization with the aim of determining the relative solids contributions from the
various sources and the mass balance for the chemicals optimized. The macro was used to solve
the 10,000 optimizations using the 10,000 iterations of the sources and receptor generated by the
Monte Carlo simulation. The results of the optimization run were used to understand the
uncertainty in the relative source contributions and chemical mass balance for the Lower Passaic
River. The 10,000 EMBM optimized results were also used as input to the trajectory forecast
calculations.

2.3 Uncertainties in Trajectory Forecast

Uncertainties in forecasted chemical concentrations were defined by the results of 10,000
iterations of forecasted values. The chemicals forecasted included: 2,3,7,8-TCDD, mercury,
copper, lead, 4,4’-DDE, Total PCB and gamma chlordane. Three remedial scenarios were
considered including: natural recovery, remediation of Primary Erosion and Inventory zones, and
remediation of sediments from RMO to 8 (see Chapter 20 for complete description of these
scenarios). Forecasting the future concentrations of chemicals under the various remedial
scenarios required inputs of (i) chemical concentrations, (ii) solids contributions for the various
sources determined by the EMB optimization, (iii) decay of excess contaminant concentrations

* A Microsoft Excel® macro is a set of instructions written in Visual Basic programming language for Application
that can be triggered by a keyboard shortcut, toolbar button or an icon in a spreadsheet. Macros are used to
eliminate the need to repeat the steps of common tasks over and over.



(lambda; 1), net sedimentation rate, and (iv) the depth of the sediment mixed layer. Uncertainties
in these inputs were defined as follows:

1.

Uncertainties in the chemical concentrations were defined by the 10,000 iterations used
as inputs to the EMB optimizations (Figure H-2). For each forecast calculation, the
source and receptor profiles were represented by the Monte Carlo generated values as
described in Section 2.1 above.

Uncertainties in solids contribution from the various sources were obtained from the
uncertainty in the solids contributions determined by the EMBM optimization results.
This was implemented by using the 10,000 solids contribution results from the EMBM.

Uncertainties in decay of excess sediment contamination were defined by the regression
between the natural logarithm of the excess concentrations versus time (see Figure 20-1
to 20-9 in Chapter 20). Using the slope (1), standard error and confidence bounds from
the regressions, 10,000 iterations of A were simulated using Monte Carlo sampling from
bounded normal distributions (Figure H-3). Note: Half (ife = In (@5} 4

Uncertainties in the sedimentation rates were generated by bootstrap analysis of the
differences between the 1989 and 2007 bathymetric surfaces (Figure H-4).

The uncertainties in depth of the sediment mixed layer were generated by 10,000 random
numbers between 10 cm to 20 cm in Microsoft Excel®. Note that Microsoft Excel®’s
random number generates uniform distributions of the parameter of interest (Figure H-5).

The Microsoft Excel® spreadsheets designed to perform forecast calculations using the best
estimate for all inputs were modified to perform the calculations for the 10,000 iterations through
a macro. For each iteration, the macro reads the input values of chemical concentrations, A,
sediment deposition rate and mixed layer depth, updates the forecast spreadsheet with these
values, and then saves the results of the forecast calculation for all the remedial scenarios.

3.0

Results

Uncertainties in the EMBM solution and trajectory forecasts were defined by the confidence
interval (5th and 95th percentiles) of the 10,000 optimized solutions. All the results are presented
and discussed in Chapters 19 and 20.
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Resuspension Distributions
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IRNI Technical Memorandum

Date: December 22, 2008

To: Ed Garvey (NNJ)

Copy: Scott Thompson (WHI), John Kern (Kern Statistical Services)

From: S. Gbondo-Tugbawa (NNJ)

Re: Estimating the Common Half Life for Legacy Sediments in Lower Passaic
River

Summary

A first-order regression model was applied to the excess chemical concentrations*and
estimated time of deposition in the Lower Passaic River, in order to determine a common
half-life for legacy contaminated sediments. The data used in the model came from the
high resolution cores in the Lower Passaic River and concentrations observed for the
external sources. The chemicals included in the model were: trans-chlordane, 2,3,7,8-
TCDD, Total PCB, 4,4’-DDE, Mercury, Lead, and Copper. The results of the analysis
indicate a common decay process® for these sediments at an average half-life of ~ 35
years. The 95 percent confidence interval for this common half life is from 27 to 48
years. Although only seven chemicals were included in the model, this result also applies
to other particle reactive contaminants in the Lower Passaic River that have a significant
resuspension source term.

Objectives

e Determine whether the chemical specific decay rates or half-lives on the excess
concentrations are similar (i.e., no significant difference amongst them).

e Estimate the common decay rate for the excess concentrations in legacy sediment
in the Lower Passaic River, along with the associated confidence interval.

Methods

e The chemicals included in the analysis were: trans-chlordane, 2,3,7,8-TCDD,
Total PCB, 4,4’-DDE, Mercury, Lead, and Copper.
e High-resolution core data from 1980 to 2007 were used in the analysis.

! Excess chemical concentrations were defined as the Lower Passaic sediment concentrations less the
concentrations from the external sources.
2 - - - - -

The term decay is used here to quantify the net processes that result in the decline of chemical
concentrations over time as observed in the high resolution cores.
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A multiple regression analysis was conducted to determine the similarities and
difference amongst the half-lives of the various chemicals. This model combined
the excess concentrations and time of deposition for all the chemicals. In addition,
it included indicator variables for the chemical type, and allowed for interaction

effects

between deposition time and chemical type. The first-order regression

model used was:

log, ExC, = Gy + 6,1, + G,Chl, + §,PCF, + G, DDE + (. Hg, + F.Cu, + §,Ph
+BaTiChl, + BT PCB, + 8,1, DDE, + B ToHg, + B1,TiCuy + BT PE, + &,

Where:

leg, ExC, = natural logarithm of the excess chemical concentrations (i.e.,
high resolution core concentrations less external levels from head of tide,
tributaries and CSO/SWOs)

F wef3, 5= regression coefficients

T. = estimated deposition time from high resolution core dating

€hl, = indicator variable = 1 if chemical is trans-chlordane, 0 otherwise
PCE, = indicator variable = 1 if chemical is Total PCB, 0 otherwise
RRE, = indicator variable = 1 if chemical is 4,4’-DDE, 0 otherwise

Hg, = indicator variable = 1 if chemical is mercury, 0 otherwise

€u, = indicator variable = 1 if chemical is cupper, O otherwise

Pk, = indicator variable = 1 if chemical is lead, O otherwise

time of deposition and chemical type

Although there are seven chemicals, only six indicators were included (indicator
variable for 2,3,7,8-TCDD not included). In the statistical theory of qualitative
predictor variables, a qualitative variable of ¢ classes is always represented by c-1
indicators variables to avoid computational difficulties. In this application, the
regression for 2,3,7,8-TCDD can be represented by all other indicator values being
equal to zero. Note that the exclusion of the 2,3,7,8-TCDD does not affect model
results. If the indicator variable of any the other chemicals modeled was excluded, the
same regression results will be obtained.

If the regression coefficients of the interaction terms are not statistically

significant, then it can be concluded that the regression lines between natural
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logarithm of excess concentrations versus time for the individual chemicals are
parallel, and that a common decay process occurs.

Results

Table 1 presents the regression output for the first order model described above. A
statistically significant model was obtained (p <0.001 from Analysis of Variance results,).
The most important finding from this regression analysis is that the interaction terms are
not significant (p > 0.05). Therefore, the individual chemical regressions are parallel and
there is a common decay process for the legacy contaminated sediments in the Lower
Passaic River. This legacy sediment represents the resuspension source that is the
dominant contribution for most chemicals. Note that the residuals of this regression
satisfy the regression assumptions of normality and homogeneity of variance.

Given that a common decay process exist for the Lower Passaic River excess legacy
chemical concentrations, a second regression run was conducted to estimate the common
decay rate and corresponding half-life. For this regression run, the interaction terms
which are not statistically significant were dropped from the regression equation. Table 2
and Figure 1 present the results for this reduced regression output. This reduced model
and all the regression coefficients are statistically significant (p < 0.0001), and the
chemical specific regressions lines are approximately parallel. The residuals of this
reduced regression satisfy the regression assumptions of normality and homogeneity of
variance. The regression coefficient for the time of deposition (##;) under the reduced
regression model, which represents the common decay rate is -0.02 (Table 2). This
common decay rate corresponds to a half life of ~35 years. Using the standard error and
t-values from Table 2 forg,, the 95 percent confidence interval for j#; is -0.026 to -0.014.
The corresponding common half-life confidence interval is 27 to 48 years.
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Table 1: Regression results with interaction terms

Multiple Regression Analysis
Dependent variable: LN C
Standard T

Parameter Estimate Error Statistic P-Value
CONSTANT 52.9204 16.7403 3.16126 0.0017
T -0.0270905 0.00838435 -3.23107 0.0014
Chle -35.7128 23.5131 -1.51885 0.1299
Hg -12.2543 21.4993 -0.569985 0.5692
DDE 23.2896 24.151 0.964335 0.3357
Pb -12.8332 21.4993 -0.596913 0.5511
Cu -23.8338 21.4993 -1.10858 0.2686
PCB 7.29054 23.5131 0.310063 0.7567
T_Chlo 0.0200792 0.0117754 1.70518 0.0893
T_Hg 0.00696226 0.0107712 0.646376 0.5186
T_DDE =-0.00903859 0.0120967 -0.747197 0.4556
T_Pb 0.00957072 0.0107712 0.888546 0.3750
T Cu 0.014935% 0.0107712 1.38702 0.1666
T _PCB 0.000407156 0.0117754 0.0345769 0.9724

Analysis of Variance
Source Sum of Squares Df Mean Sgquare F-Ratio P-Value
Model 1834.02 13 141.078 978.15 0.0000
Residual 39.663 275 0.144229
Total (Corr.) 1873.68 288
R-squared = 97.8832 percent
R-squared (adjusted for d.f.) = 97.7831 percent
Standard Error of Est. = 0.379775
Mean absolute error = 0.283226

Table 2: Regression results without interaction terms
Multiple Regression Analysis
Dependent variable: LN C
Standard T

Parametexr Estimate Exrror Statistic P-Value
CONSTANT 38.7251 5.7386 6.74818 0.0000
T -0.0199807 0.002874 -6.95222 0.0000
Chle 4.38214 0.0919774 47 .6436 0.0000
Hg 1.64672 0.0857078 19.2132 0.0000
DDE 5.24658 0.0932575 56.2591 0.0000
Pb 6.27178 0.0857078 73.1763 0.0000
Cu 5.98301 0.0857078 69.8071 0.0000
PCB 8.1009 0.0919774 88.0748 0.0000

Analysis of Variance
Source Sum of Squares Df Mean Square F-Ratio P-Value
Model 1832.76 7 261.822 1797.79 0.0000
Residual 40.9236 281 0.145636
Total (Corr.) 1873.68 288
R-squared = 97.8159 percent
R-squared (adjusted for d.f.) = 97.7615 percent
Standard Error of Est. = 0.381622
Mean absoclute error = 0.283729
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Figure 2: Hlustration of natural logarithm of observed excess chemical concentration,
time of deposition and fitted Regression Function.
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Attachment L

Conditional Simulation on Bathymetry

Introduction

Sediment stability evaluation is a standard part of remedy selection at large contaminated sediment
superfund sites. These evaluations often combine the outputs of deterministic sediment transport
models, empirical mass balance arguments, geotechnical evaluations such as core dating and
bathymetric change analysis. Each of these techniques has its own sets of strengths and weaknesses,
but all share in a lack of flexibility in spatial scaling and uncertainty analysis that can be incorporated
directly into remedy selection.

At the Lower Passaic River, bathymetric surveys were conducted in 1989, 1995, 1996, 1997, 1999, 2001,
2002, 2004 and 2007. These bathymetric surveys provide a unique opportunity for detailed temporal
comparison of bathymetric changes over both long and short temporal intervals, as well as at varying
spatial scales. However, direct analysis of bathymetry data presents unique statistical issues that must
be carefully worked through in order to develop reliable results and interpretation.

Bathymetric survey measurements were integrated and reported on 10-foot intervals along transects
and transects were spaced at approximately 100-foot intervals perpendicular to river flow. Because of
this sampling design, resulting data are spatially correlated across flow and relatively variable along
flow. In addition, transect locations typically varied by plus or minus 18 feet among years. These factors
combined cause temporal changes of interest to be potentially confounded with cross and long flow
spatial variation, as well as potential artifacts due to sample misalignment. The nature of this potential
confounding is complicated by the scale of aggregation over which comparisons are made. For example
comparisons of mean elevation within relatively large areas, such as hydrodynamic model grid cells are
less influenced by this lack of spatial alignment than are comparisons at smaller scales.

Bathymetric change analysis typically entails interpolation of bathymetric surfaces, followed by
subtraction of resulting interpolated surfaces. This approach is expected to be relatively accurate for
estimation of net deposition, however, the effects of smoothing due to the interpolation can also be
expected to under estimate the amount of material eroded at unsampled locations. This bias can
adversely affect estimates of resuspention that are important to understanding temporal trends in
contaminant concentration in surface sediments. Future risks and remedial selection are greatly
dependent on understanding future contaminant concentrations in surface sediments.

Because bathymetry measurements are spatially correlated, and because sampling locations among
surveys (i.e. in different years) are spatially unaligned, and because comparisons are of interest at
varying spatial scales, standard statistical procedures requiring random independent samples, are
unsatisfying and potentially inaccurate for some comparisons of interest. As an alternative to more
conventional bathymetric change analysis methods, we used a geostatistical Monte Carlo technique



known as conditional simulation (Journel and Huijbregts 1978) to directly study the temporal change,
spatial heterogeneity and spatial scale with regard to understanding sediment stability. These
geostatistical techniques were selected because a probabilistic model is used to explicitly account for
the effects of spatial correlation, temporal change, varying scales of interest and mismatch of sampling
locations among surveys. The proposed methods are particularly powerful in that the results can be
expressed as maps of the probability of sediment instability (erosion) at varying temporal and spatial
scales, particularly at scales smaller than sediment transport model grid.

Geostatistical simulation procedures were developed in the mining industry in response to the need to
estimate parameters and their uncertainty distributions from data that are spatially correlated. The
methods explicitly provide tools to estimate parameters that vary spatially, and to propagate
uncertainty over ranges of scales of interest. For example, for calibration of hydrodynamic models, the
average bathymetry is of interest at the scale of the sediment transport model domain grid cells.
Conversely, areas of erosion and deposition, may occur at sub-model-domain scales that if ignored could
cause remedial evaluation to be biased due to the effects of smoothing the model domain. Conditional
simulation provides a probability distribution at each node of a fine mesh grid (i.e. 3 foot spacing) that
can then be integrated, providing error distributions for any function of the bathymetry, defined over
specified areas of interest.

Conditional simulation methods have not been used widely at other superfund sites in the past, but
have been recognized recently as a powerful tool facilitating analysis of uncertainty associated with
metrics commonly used for remedial selection. The methods have been used widely in the mining
industry, where propagating uncertainty through complicated transfer functions of geological data is
important to cost analysis and reserve forecasting. As remedy selection progresses at large superfund
mega sites with high remedial costs, the effort necessary to conduct a rigorous geostatistical simulation
analysis of bathymetry and contaminant data will likely become more common. Recently, Kern et al
(2009) used conditional simulation at the Fox River Superfund Site to refine dredge prism designs.
Based on those analyses, it was found that additional sampling within planned dredging areas could be
used to reduce the costs of removal of non-targeted sediments and from leaving targeted sediments
behind. Recommendations of the simulation analysis were implemented in 2008, confirming that
significant amounts of uncontaminated sediments were within the lateral and vertical boundaries of the
60% design dredge prisms (Barabas, et al 2009). Dredge prism refinements developed from the
simulation analysis and subsequent confirming field sampling are expected to net $5 to $10 million in
savings in the first year of a 10 year dredging project.

At the Passaic, we found that year over year, erosion and deposition were estimated to be nearly
neutral in most areas when aggregation occurred over large spatial areas. Conversely, when considered
at higher resolution (i.e. smaller scales) we found that there were many areas with relatively high
probability of erosion or deposition within larger, apparently stable, transport model cells. We also used
the analysis to identify areas that were erosional in at least one of the 36 possible pairs of years over the
9 year; and also to identify areas that were erosional in some years and later depositional in other years.



This attachment describes the simulation methodology used to study sediment stability in the Lower
Passaic River. The results of simulated sediment dynamics from comparison of various bathymetric
surfaces are presented and discussed in Chapter 11 of the CSM.

Overview of Simulation Approach

Comparison of bathymetric surveys is complicated by strong spatial correlation among soundings, within
surveys, and spatial misalignment of transects, among surveys. Traditional statistical procedures such as
regression and analysis of variance (Neter et. al. 1996) are designed for independent samples, or paired
designs which are not possible for bathymetry surveys. These shortcomings of traditional statistical
procedures were avoided with conditional simulation, because the procedures are explicitly designed
for spatially correlated data and provide a mechanism to compensate for unaligned sample locations.

The conditional simulation approach is based on the same ideas as a Monte Carlo or parametric
bootstrap analysis where inference is based on the ensemble properties of a large number of random
draws from a probability distribution thought to have the statistical characteristics of the properties of
interest. The primary difference is that the underlying statistical distributions are assumed to be
spatially correlated, and the random draws are from a population of maps rather than populations of
individual values. The population of maps are consistent with the statistical distribution of sample data,
have the same spatial correlation relationships, and also interpolate the sample data. This method has
also been referred to as “stochastic interpolation”. Inferences are developed by repeatedly drawing
equally likely maps, calculating transfer functions of the mapped values, such as erosion and repeating
the process. The result is a histogram of the output functions of interest at selected scales of
aggregation. In this way, it is possible to construct confidence intervals of erosion at essentially any
selected scale while properly incorporating uncertainty due to sampling error, misalighment of transects
and spatial correlation.

The analysis required several data handling procedures, including; 1) Grid Straightening, 2) Detrending,
3) Semivariogram analysis, and 4) calculating sediment erosion and deposition at scales of interest.

Grid Straightening

Geostatistical procedures require estimation of the spatial relationships among sampling locations in
order to determine how best to simulate or interpolate to unsampled locations. In typical geological
and geographical settings, these relationships are measured along geographic coordinate axes and
summarized by the semivariogram—a function that quantifies variance as a function of distance. For
positively spatially correlated processes, variance is an increasing function of distance. In other words,
dissimilarity is expected to increase with distance between sample locations. However, when studies
involve data collected within riverine or estuarine systems, spatial relationships are determined largely
by flow directions. In general, it is expected that sample locations along similar flow paths would be



more similar in value than those that are located across flow directions. For bathymetry this can be
seen by the obvious orientation of depth contours that parallel the direction of flow.

Because the Passaic River is sinuous, variogram analysis based on geographic coordinates would not
properly capture the spatial relationships that are expected to be driven by flow directions. To correct
this situation, the geographic coordinates were transformed to long- and cross-flow coordinates using
the Schwarz—Christoffel Toolbox (Driscoll, 1996) implemented in MATLAB®O (The Math Works, 1998).

The coordinate transformation (Figure 1) was done as follows: 1) the physical boundary was defined by
the two banks and lines marking the northern (RM 7.5) and southern (RM 0.5) ends; 2) curvilinear grid
lines parallel and perpendicular to the flow were constructed using the Schwarz—Christoffel conformal
mapping; 3) the Schwarz—Christoffel Toolbox was used to transform all data locations from rectangular
(Euclidean) coordinate to the constructed curvilinear system. One unit of distance corresponds in the
new curvilinear scale to an average of ~150 ft in the Euclidean scale. All geostatistical analyses were
performed in the transformed coordinate system.

Exploratory Data Analysis and Transformations
The basic assumptions of the geostatistical model that we applied are that the bathymetric elevations
can be mathematically transformed to a population that;

1. has constant mean and variance across the area of interest,
2. spatial correlation that is a function of distance and direction, and
3. anormal distribution.

One and two are the assumptions of second order stationarity (Cressie 1991) and additional of
assumption three leads to the multigaussian model described by Deutsch and Journel (1992) and
also by Goovaerts (1997) with applications in natural resources characterization. This assumption is
similar to the assumption of constant variance in a traditional regression analysis. The purpose of
the transformation and detrending of the bathymetry data that we describe below is analogous to
the variance stabilizing transformations commonly applied prior to a regression analysis.

Histograms

Figures 2a through 2h show the histograms and summary statistics of the bathymetry data from each
survey. It can be seen that the distributions are somewhat left skewed, and tend to have an over
abundance of measurements between 0 and -5 feet below sea level. This deviation from normality is
expected to require some level of transformation prior to application of the multi-Gaussian model for
simulations. We used the normal score transformation to correct for non-normality.

Detrending

For each survey, it was found that the cross-flow semivariograms have much shorter ranges of influence
and also much higher maximum values. This is an example of zonal anisotropy (Journel and Huijbregts
1978; p 182) caused by directional differences in variation. It is not surprising that elevations would vary
more rapidly across flow than along flow due to the quasi-U shaped profile of the river cross sections. In



geostatistical terms, this is indicative of a non-stationarity of the mean that could adversely affect
inferences if not modeled carefully. In order to minimize the potential effects of strong zonal anisotropy
on simulation results, the data were detrended.

Bathymetry elevations in the Passaic River exhibit a strong U-shaped channel profile with a thalweg that
meanders within the channel tending to be closer to outside bends in areas of higher curvature.
Elevations also tend to decline gradually with distance downstream. These large scale trends would
violate the constant mean assumption described above for the geostatistical model, so these large scale
patterns were estimated and subtracted from the original elevations so that the resulting residuals
could be treated as a second order stationary process. Detrending is a common approach when
analyzing spatial data (Cressie, 1990 p. 46) and is part of the process of partitioning data into large and
small scale fluctuations that are of interest. In this application, the primary interest is in understanding
relatively small (3-6 inch) changes in elevation among surveys, so larger scale spatial variation associated
with channel cross sections are would tend to mask these smaller fluctuations of primary interest.

Large scale spatial patterns in the bathymetry are well understood—including an approximately U-
shaped river cross section and a general downward sloping trend in the long-flow direction. Itis also
understood that the position of the minimum elevation in each cross section (the thalweg) varies
making it difficult to model using a simple polynomial function of the geographic coordinates.
Polynomial regressions were tested with little success resulting in very low R-squared values (less than
20 percent; Figure 2i-2p) and the residuals also show strong zonal anisotropy (Figure 2j). As a substitute
for more conventional trend surface approaches, the large scale trend was estimated by calculating the
average elevation within relatively large rectangular grid cells, and then smoothing the estimated cell
means with a moving window average (Isaaks and Srivastava, 1989). An example of the resulting trend
surface for the 1995 bathymetry can be seen in Figure 3. The objective of detrending was to partition
the bathymetry into a large scale trend component and a second order stationary residual process. The
size of the rectangular cells was selected by iterating on the semivariograms, starting with relatively
large cells and decreasing them until the zonal anisotropy in the semivariograms was eliminated—
consistent with the assumptions of constant mean and variance.

Semivariogram Analysis

Bathymetry elevations were detrended as described above and semivariograms were recalculated for
each survey. The P-field simulation algorithm used for these studies requires semivariograms for both
uniform and normal score transformed data (Srivastava, 1992). Therefore the detrended residuals were
transformed to uniform and normal scores and semivariograms were calculated for each. The resulting
empirical semivariograms and fitted positive definite models can be seen in Figures 4a-4p. It can be
seen that the long- and cross-flow sills are similar for these directional variograms, indicating that the
zonal anisotropy has been greatly reduced or eliminated by detrending. Semivariograms were
constructed using the gamv procedure in GSLIB (Deutsch and Journel, 1998).



Kriging Analysis

Another intermediate step in the simulation process is development of a Kriged estimate of the mean
and kriging variance for each unsampled location using the normal scores transformed residuals and
corresponding semivariograms. This analysis was conducted using the kt3d procedure in GSLIB (Deutsch
and Journel, 1998). The simple kriging option was selected. The estimated mean and kriging variances
were used to estimate the conditional cumulative distribution at each location under the assumptions of
the multi-Gaussian model. In effect the cumulative conditional distribution is assumed to be Normal
with means and variances given by the Kriged estimates.

Simulation Algorithm

Conditional simulation has been understood to be a potential tool for investigating uncertainty
associated with remedial alternatives selection and design at large complex contaminated sediment
sites, but the better known algorithms available to practitioners, such as sequential Gaussian simulation
(Ripley, 1987; Deutch and Journel, 1998), tend to be extremely computer and time intensive, often
limiting their application. In the mid 1980s to 1990s, methods were developed at the University of
Wyoming (Borgman et al. 1984) that reduced the necessary computational time of spatial simulation
through application of the fast Fourier transform (FFT). Kern and Borgman (1997) described the
algorithm in detail, demonstrated the accuracy of the method and compared it with a sequential
algorithm for reproduction of second order moments and computational speed.

The frequency domain methods are so termed, because spatially correlated data are transformed to a
series of two dimensional sequences of sine and cosine functions (i.e. their frequency components)
which are statistically independent. Because the Fourier coefficients are statistically independent, the
space domain simulation problem of generating many correlated variables with constant variance is
reduced to simulation of a vector of independent random Fourier coefficients with frequency dependent
variances. This vector of independent random variables is then “reorgainized” using the inverse FFT to
produce a space domain simulation with the specified covariance relations. Effectively, the sequential
procedure is replaced by one application of the inverse FFT to the full vector.

The method is faster in very practical terms. For example, when simulating values at N spatial locations,
the computational time for the more widely known sequential simulation procedures (SGSIM; Deutch
and Journel, 1998) is proportional to N?, while the computational time for the FFT method is
proportional NxIn(N), so for large simulation problems, such as for the bathymetry analysis where N >
1,000,000 spatial locations, the FFT method reduces computation time dramatically. A single simulated
realization of 1,000,000 spatial locations requires approximately 2.6 seconds with the FFT method. A
similar calculation using SGSIM or other sequential algorithms would require approximately 45 minutes
per realization. In practical terms, including post processing of simulation results, the significant
reduction in computational time of the FFT approach dramatically increases the feasibility for simulation
studies that can be handled within reasonable time frames. After all, conditional simulation is a Monte
Carlo technique requiring many realizations to provide accurate inference. Depending on the size of the
spatial domain, the FFT method can be used to generate many hundreds to thousands of realizations in



minutes to hours, while the competing algorithms would require days. In this study 500 realizations
from each survey were constructed and post processed.

One might ask how many realizations are adequate to estimate the things like the probability of erosion
we have used in this application. A rough way to consider this question is to consider that probabilities
associated with each cell in the simulation grid could be treated as proportions from a binomial
distribution. If one defines “p” to be the estimated proportion of realizations in which erosion was

observed, the standard error of the estimated p is given by se(p) = m, where K is the
number of realizations. So for estimated probabilities near 0.7 the standard error for K=500 realizations
is 0.02. This indicates that if the simulations were repeated using the same histogram and
semivariogram parameters, one would expect probabilities ranging from 0.68 to 0.72.

P-Field Algorithm

Direct conditional simulation with the FFT method as described by Borgman (1984) is feasible for small
numbers of conditioning data (i.e. sampled locations) relative to the number of simulation nodes. A
typical desktop or laptop computer with 3G of memory can reasonably handle up to approximately 1000
sample points and one million simulation nodes. Bathymetry data are unique among other types of
environmental data in that there are typically hundreds of thousands of sample locations for
conditioning, so the direct FFT approach would not be feasible without dramatically larger capacity
computer resources. To work around this problem an alternative simulation algorithm known as P-Field
(Srivastava, 1992) was selected because the algorithm can be combined with the FFT, resulting in an
accurate simulation algorithm with speed and efficiency similar to the full FFT approach.

The P-Field algorithm includes estimation of the CCDF at each of the unsampled locations conditional on
the observed sample data through kriging. Once these CCDFs are constructed, each realization is
sampled by selecting a uniform random value at each location and inverting the CCDF evaluated at the
selected uniform value to produce a simulated value in the original scale. The idea behind the P-Field
algorithm is that the uniform variables are spatially correlated to insure that the values drawn from the
CCDFs reproduce the spatial correlation of the original untransformed data. Simply selecting uniform
random values for each location without regard to spatial correlation would result in simulated
realizations that reproduced the sample histogram, but with inflated nugget effect. So the FFT
algorithm is used to produce unconditional realizations of the uniform random variables that are
properly spatially correlated. This step in the process is the most computationally intensive for a
sequential algorithm, requiring minutes per each of the 500 realizations, whereas the FFT method
requires just 3 to 6 seconds per realization. The method is extremely fast and each realization
reproduces the original sample histogram and semivariogram.

Surface Comparisons
To compare bathymetric elevations among years, an equally likely surface was simulated for each year
of interest, and the elevations were subtracted on each pixel in the simulation grid. These differences



were compared with difference cutoffs of interest, such as 3-inches, 6-inches or 12-inches and the
number of times a simulated difference exceeded each cutoff value was recorded for each pixel. These
frequencies were then divided by the total number of simulations (K=500) representing the probability
of erosion at these selected depths of interest. Differences were also integrated over areas of interest,
such as transport model grid cells, providing probability distributions for the amount of erosion
averaged over these cells. The results of these and other comparisons are provided in Chapter 11 of the
conceptual site model.

Figure 5 provides three realizations of the simulated elevation surface for 1995. It can be seen that the
sample data constrain the range of variation, yet there are distinct differences among simulated
surfaces that represent the uncertainty remaining in bathymetry interpolation.

Figure 6 illustrates the histograms of simulated and actual bathymetric data. It can be seen that the
simulation algorithm reproduces the input sample histogram as desired. It should be noted that this is
a comparison of the histogram of all simulated locations to the data histogram, as opposed to the subset
of simulated locations at which comparisons were constructed. This latter comparison cannot be
developed without biasing artifacts of sampling, because the distribution of samples is not independent
of the subset of cells used for comparison, because the comparison subset is restricted to deeper areas
than that represented by the sample data. Because of this biasing one would not expect the sample
histogram to match the simulated histogram within a sub-area of the river.

Figure 7 shows the comparison between the theoretical long- and cross-flow semivariogram models and
actual semivariograms calculated from 20 simulated surfaces. It can be seen that the semivariogram is
reasonably well reproduced for both directions. If anything, these 20 realizations may slightly under-
state the long-flow variogram which would tend to result in understatement of the magnitude of long
range fluctuations and potentially creating a small degree of smoothing in the long-flow direction.

Discussion

This attachment is intended to document the simulation procedure that was used to support analyses
reported in Chapter 11 of the CSM. The methods are relatively new to the environmental sciences, but
are well documented in theoretical and practical developments in the geological engineering and
geostatisitics literature. The advanatages of the conditional simulation approach are worth-while when
data are correlated and inferences are needed at scales other than the original data. Essentially, any
complicated non-linear transfer functions of the surface can be accommodated. In this instance,
separate estimates of volume of material eroded (deposited) were of interest and interpolated maps did
not provide adequate understanding of the magnitude and frequency of erosion at sub-model grid
scales. These methods provided an improved understanding of these processes.
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Figure 1: Long flow and cross flow coordinate axes resulting from the Schwartz-
Christoffel conformal mapping in a selected part of the lower Passaic River.
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Figure 2a. Histogram and Summary Statistics for 1989 Bathymetry Survey

16617

Data count:

-15.220M
42 GGG

hi=an:

“Jarance:

1.2
(B

-15.4
12.9

Upper quartile:

hiedian:

Lawer quartile:

hiEximum:

-2

hfinimum:

Aauanbay

Depth




Figure 2b. Histogram and Summary Statistics for 1995 Bathymetry Survey
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Figure 2c. Histogram and Summary Statistics for 1996 Bathymetry Survey

12374
-11.8701
48 7937

Data count:
“Jarance:

hi=an:

L= o
oo oo
< T T
= =
. E =
E = )
= o m (=
=
= o B o=
E5473

SR

hfinimum:

= - ---

P I

e e e -

U U Y N U U KU A

[T e Al R R I R ] e I I T

0.1z
oA
=008 —4-----

0.0

Juanhaly

D04 —f-----mmmmmm e m -

DoE —-----

25 20 15 -10 5 0
Depth

=30




Figure 2d. Histogram and Summary Statistics for 1997 Bathymetry Survey
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Figure 2e. Histogram and Summary Statistics for 1999 Bathymetry Survey
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Figure 2f. Histogram and Summary Statistics for 2001 Bathymetry Survey

1521

Data count:

-11.9346
41 9254

“Jarance:

2.4
-6 .6
13
-17 4
0.5

Upper quartile:

hiedian:

Lawer quartile:

hiaximum:
hfinimum:

-25

Aauanbay

Depth




Figure 2g. Histogram and Summary Statistics for 2002 Bathymetry Survey
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Figure 2h. Histogram and Summary Statistics for 2004 Bathymetry Survey
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Figure 2i: Polynomial Regression Result for 1989 bathymetry

Multiple Regression Analysis for 1989 Bathymetry Survey Depth and Transformed River Coordinates
(Note: U = Cross Flow Coordinate; V = Along Flow Coordinate)

Dependent variable: Depth

Standard T
Parameter Estimate Error Statistic P-Value
CONSTANT -14.62280 0.236888 -61.729 0.0000
U 2.47516 0.215729 11.474 0.0000
v 0.03028 0.002888 10.484 0.0000
U*u 0.920473 0.112363 8.052 0.0000
vV -0.00015 0.000008 -17.603 0.0000
U*v -0.01657 0.000966 -17.152 0.0000
Analysis of Variance

Source Sum of Squares Df Mean Square F-Ratio P-Value
Model 95633.4 5 192126.7 519.73 0.0000
Residual 611305.0 16611 36.8012

Total (Corr.) 706938.0 16616

R-squared = 13.5278 percent

R-squared (adjusted for d.£.) = 13.5018 percent
Standard Error of Est. = 6.0664

Mean absolute error = 4.79136

Durbin-Watson statistic = 0.130868 (P=0.0000)
Lag 1 residual autocorrelation = 0.9345




Figure 2j: Polynomial Regression Result for 1995 bathymetry. Inset Figure is Semivariogram of Residuals

Multiple Regression Analysis for 1995 Bathymetry Survey Depth and Transformed River Coordinates
(Note: U = Cross Flow Coordinate; V = Along Flow Coordinate)

Dependent variable: Depth

Standard T
Parameter Estimate Error Statistic P-Value
CONSTANT -6.01978 0.474852 =12 .6772 0.0000
U -1.09495 0.228131 -4.7997 0.0000
v -0.08985 0.005290 -16.9857 0.0000
U*y 5.32106 0.091953 57.8671 0.0000
ViV 0.00022 0.000014 15.9645 0.0000
U*v -0.00474 0.001005 -4.7121 0.0000
Analysis of Variance
Source Sum of Squares Df Mean Square F-Ratio P-Value
Model 181699.0 5 36339.8 872.21 0.0000
Residual 868240.0 20839 41.6642
Total (Corr.) 1.04994E6 20844 i
R-squared = 17.3057 percent el Variogram of Regression Residuals
R-squared (adjusted for d.f.) = 17.2858 percent
Standard Error of Est. = 6.45478
Mean absolute error = 5.33981 100 4 Along Flow
Durbin-Watson statistic = 0.0296894 (P=0.0000) g Across Flow
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Figure 2k: Polynomial Regression Result for 1996 bathymetry

Multiple Regression Analysis for 1996 Bathymetry Survey Depth and Transformed River Coordinates
Note: U = Cross Flow Coordinate; V = Along Flow Coordinate)

Dependent variable: Depth

Standard T
Parameter Estimate Error Statistic P-Value
CONSTANT -16.90500 0.899662 -18.7904 0.0000
U -0.36220 0.318288 -1.1380 0.2551
v 0.00854 0.008793 0.9716 0.3313
U*u 5.16838 0.095408 54.1717 0.0000
Vv 0.00001 0.000021 0.4037 0.6864
U*vy -0.00683 0.001346 -5.0771 0.0000
Analysis of Variance

Source Sum of Squares Df Mean Square F-Ratio P-Value
Model 149683.0 5 29936.6 736.17 0.0000
Residual 747140.0 18373 40.6651

Total (Corr.) 896823.0 18378

R-squared = 16.6904 percent

R-squared (adjusted for d.f.) = 16.6677 percent
Standard Error of Est. = 6.37692

Mean absolute error = 5.26645

Durbin-Watson statistic = 1.95342 (P=0.0008)
Lag 1 residual autocorrelation = 0.0232867




Figure 2l: Polynomial Regression Result for 1997 bathymetry

Multiple Regression Analysis for 1997 Bathymetry Survey Depth and Transformed River Coordinates
(Note: U = Cross Flow Coordinate; V = Along Flow Coordinate)

Dependent variable: Depth

Standard T
Parameter Estimate Error Statistic P-Value
CONSTANT -15.43800 0.889624 -17.3534 0.0000
U 0.41462 0.327394 1.2664 0.2054
v -0.00962 0.008684 -1.1077 0.2680
U*y 4.62971 0.098426 47.0377 0.0000
Vv 0.00006 0.000020 2.8574 0.0043
U*v -0.00960 0.001377 -6.9715 0.0000
Analysis of Variance

Source Sum of Squares Df Mean Square F-Ratio P-Value
Model 122616.0 5 24523.2 632.26 0.0000
Residual 696994.0 17970 38.7865

Total (Corr.) 819610.0 17975

R-squared = 14.9603 percent

R-squared (adjusted for d.f.) = 14.9366 percent
Standard Error of Est. = 6.22788

Mean absolute error = 5.1599

Durbin-Watson statistic = 1.46572 (P=0.0000)
Lag 1 residual autocorrelation = 0.267112




Figure 2m: Polynomial Regression Result for 1999 bathymetry

Multiple Regression Analysis for 1999 Bathymetry Survey Depth and Transformed River Coordinates
(Note: U = Cross Flow Coordinate; V = Along Flow Coordinate)

Dependent variable: Depth

Standard T
Parameter Estimate Error Statistic P-Value
CONSTANT -23.76950 0.87765 -27.0832 0.0000
U -9.85349 0.31098 -31.6848 0.0000
v 0.08111 0.00884 9.1712 0.0000
U*u 7.05628 0.09114 77.4202 0.0000
Vv -0.00019 0.00002 -8.9664 0.0000
U*vy 0.04073 0.00137 29.702 0.0000
Analysis of Variance

Source Sum of Squares Df Mean Square F-Ratio P-Value
Model 193813.0 5 38762 .6 1269.50 0.0000
Residual 471533.0 15443 30.5338

Total (Corr.) 665346.0 15448

R-squared = 29.1296 percent

R-squared (adjusted for d.f.) = 29.1067 percent
Standard Error of Est. = 5.52574

Mean absolute error = 4.52886

Durbin-Watson statistic = 1.59393 (P=0.0000)
Lag 1 residual autocorrelation = 0.202988




Figure 2n: Polynomial Regression Result for 2001 bathymetry

Multiple Regression Analysis for 2001 Bathymetry Survey Depth and Transformed River Coordinates
(Note: U = Cross Flow Coordinate; V = Along Flow Coordinate)

Dependent variable: Depth

Standard T
Parameter Estimate Error Statistic P-Value
CONSTANT -26.8546 0.86168 -31.1653 0.0000
U -10.7103 0.30563 -35.0432 0.0000
v 0.1128 0.00868 12.9854 0.0000
U*y 6.7680 0.08866 76.3319 0.0000
Vv -0.0003 0.00002 -12.4402 0.0000
U*v 0.0447 0.00134 33.2957 0.0000
Analysis of Variance

Source Sum of Squares Df Mean Square F-Ratio P-Value
Model 194485.0 5 38896.9 1312.61 0.0000
Residual 468355.0 15805 29.6334

Total (Corr.) 662840.0 15810

R-squared = 29.3411 percent

R-squared (adjusted for d.f.) = 29.3188 percent
Standard Error of Est. = 5.44365

Mean absolute error = 4.47725

Durbin-Watson statistic = 1.59144 (P=0.0000)
Lag 1 residual autocorrelation = 0.204263




Figure 20: Polynomial Regression Result for 2002 bathymetry

Multiple Regression Analysis for 2002 Bathymetry Survey Depth and Transformed River Coordinates

(Note: U = Cross Flow Coordinate; V = Along Flow Coordinate)

Dependent variable: Depth

Standard T
Parameter Estimate Error Statistic P-Value
CONSTANT -15.1029 0.481731 -31.3513 0.0000
U 2.3383 0.233236 10.0253 0.0000
v 0.0291 0.005260 5.5312 0.0000
U*y 1.1821 0.094716 12.4807 0.0000
Vv -0.0001 0.000013 -8.4951 0.0000
U*v -0.0176 0.001022 -17.2185 0.0000
Analysis of Variance

Source Sum of Squares Df Mean Square F-Ratio P-Value
Model 65099.7 5 13019.9 393.22 0.0000
Residual 627880.0 18963 33.1108

Total (Corr.) 692980.0 18968

R-squared = 9.39416 percent

R-squared (adjusted for d.f.) = 9.37027 percent
Standard Error of Est. = 5.7542

Mean absolute error = 4.7017

Durbin-Watson statistic = 0.0507036 (P=0.0000)
Lag 1 residual autocorrelation = 0.974557




Figure 2p: Polynomial Regression Result for 2004 bathymetry

Multiple Regression Analysis for 2004 Bathymetry Survey Depth and Transformed River Coordinates
(Note: U = Cross Flow Coordinate; V = Along Flow Coordinate)

Dependent variable: Depth

Standard T
Parameter Estimate Error Statistic P-Value
CONSTANT -13.6587 0.164017 -83.2761 0.0000
U -1.95215 0.136465 -14.3052 0.0000
v 0.03363 0.002168 15.5093 0.0000
U*y 4.23460 0.076119 55.6312 0.0000
Vv -0.00016 0.000007 -24.7688 0.0000
U*v -0.00185 0.000639 -2.8930 0.0038
Analysis of Variance

Source Sum of Squares Df Mean Square F-Ratio P-Value
Model 207735.0 5 41546.9 1103.07 0.0000
Residual 937440.0 24889 37.6648

Total (Corr.) 1.14517E6 24894

R-squared = 18.14 percent

R-squared (adjusted for d.f.) = 18.1236 percent
Standard Error of Est. = 6.13717

Mean absolute error = 5.03368

Durbin-Watson statistic = 0.0500437 (P=0.0000)
Lag 1 residual autocorrelation = 0.974926




Figure 3: Estimated trend surface for 1995 bathymetry elevations. Note that the
long- and cross-flow coordinates are not to scale or proportion.
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Figure 4a: Directional Semivariograms and Fitted Models for Normal Scores

Transformed Residuals of Detrended 1989 Bathymetry
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Figure 4b: Directional Semivariograms and Fitted Models for Uniform Scores

Transformed Residuals of Detrended 1989 Bathymetry
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Figure 4c: Directional Semivariograms and Fitted Models for Normal Scores

Transformed Residuals of Detrended 1995 Bathymetry
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Figure 4d: Directional Semivariograms and Fitted Models for Uniform Scores

Transformed Residuals of Detrended 1995 Bathymetry
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Figure 4e: Directional Semivariograms and Fitted Models for Normal Scores
Transformed Residuals of Detrended 1996 Bathymetry
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Figure 4f: Directional Semivariograms and Fitted Models for Uniform Scores

Transformed Residuals of Detrended 1996 Bathymetry
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Figure 4g: Directional Semivariograms and Fitted Models for Normal Scores

Transformed Residuals of Detrended 1997 Bathymetry
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Figure 4h: Directional Semivariograms and Fitted Models for Uniform Scores

Transformed Residuals of Detrended 1997 Bathymetry
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Figure 4i: Directional Semivariograms and Fitted Models for Normal Scores
Transformed Residuals of Detrended 1999 Bathymetry
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Figure 4j: Directional Semivariograms and Fitted Models for Uniform Scores

Transformed Residuals of Detrended 1999 Bathymetry
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Figure 4k: Directional Semivariograms and Fitted Models for Normal Scores
Transformed Residuals of Detrended 2001 Bathymetry
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Figure 4l: Directional Semivariograms and Fitted Models for Uniform Scores

Transformed Residuals of Detrended 2001 Bathymetry
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Figure 4m: Directional Semivariograms and Fitted Models for Normal Scores

Transformed Residuals of Detrended 2002 Bathymetry
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Figure 4n: Directional Semivariograms and Fitted Models for Uniform Scores

Transformed Residuals of Detrended 2002 Bathymetry
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Figure 40: Directional Semivariograms and Fitted Models for Normal Scores

Transformed Residuals of Detrended 2004 Bathymetry
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Figure 4p: Directional Semivariograms and Fitted Models for Uniform Scores

Transformed Residuals of Detrended 2004 Bathymetry
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Figure 5: Three realizations of the 1996 bathymetric elevations.




Figure 6: Histogram of sample elevations (Panel A) and simulated elevations (Panel
B) for the lower Passaic River in 1995.

5000 . . . . . . T T
4000
3000
2000

1000

-40 -35 -30 -25 -20 -15 -10 -5 0 5
Depth (ft)

Note:

1) Simulated elevations represent all locations at which values were simulated, as opposed to the

subset of locations at which inter year comparisons were conducted.

2) This comparison illustrates that the simulation algorithm reproduces the data histogram.

3) Because inter-year comparisons of simulated data were restricted to a smaller lateral extent than
the sample data, direct comparison of histograms would be biased toward deeper soundings in the
simulated soundings.



Semi-Variance

Figure 7: Semivariograms for 20 realizations compared with theoretical model
semivariograms for cross-flow (green) and long-flow (black) directions.
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